Переносимость перегрузок человеком
Маневренные возможности пилотируемых ЛА ограничиваются способностью людей, находящихся на его борту, переносить перегрузки. Чем большую перегрузку можно создать на самолете, тем меньше будет радиус кривизны траектории. В зависимости от направления центростремительного ускорения субъективная сила тяжести человеческого тела (его вес) может быть больше нормального (положительная перегрузка), обращаться в нуль (невесомость) и принимать отрицательные значения (отрицательная перегрузка).
При выходе самолета из пикирования, когда инерционная сила направлена вниз, летчика прижимает к сиденью, на него действует положительная перегрузка в направлении голова - таз. При входе самолета в пикирование, когда инерционная сила направлена вверх, летчика отрывает от сиденья, на него действует отрицательная перегрузка в направлении таз - голова.
На рисунке показаны предельные перегрузки n в различных направлениях, переносимые человеком в зависимости от продолжительности их действия t. Переносимость перегрузки связана с механическим воздействием опоры (кресла, сиденья, ложемента) на тело человека, с приливами и отливами крови (с нарушением мозгового кровообращения).
Рисунок объясняет, почему космонавты возвращаются на Землю в летательных аппаратах с низким аэродинамическим качеством (т.е. по баллистическим траекториям) лежа в специальных креслах спиной к направлению полета – при таком положении тела легче всего переносить перегрузки. Тренированные люди в специальных противоперегрузочных костюмах способны переносить достаточно высокие перегрузки в течение длительного времени. Поэтому маневренные самолеты (например, перехватчики) могут достигать эксплуатационных перегрузок (т.е. перегрузок, действующих на самолёт в процессе его нормальной эксплуатации) порядка 10–13. Для неманевренных самолетов (пассажирские, самолеты для транспортировки грузов) эксплуатационные перегрузки не превышают 2.
Заветной мечтой человека с древних времен был полет. Великие люди наблюдали за птицами и делали скромные попытки изменить свое «приземленное» положение. Первые инженерные разработки в области авиации (чертежи, расчеты, эксперименты) были проведены еще в XV веке итальянцем Леонардо да Винчи. Однако первый действующий летательный аппарат оторвался от земли лишь в начале ХХ века. И вот в наше время интенсивность полетов достигла таких масштабов, что встает очень острая проблема – столкновения ЛА в воздухе.
В данной работе я попытался разработать интеллектуальную систему – помощник летчика (автопилот, для непилотируемого случая), которая будет в установившемся режиме полета (высота полета H = const) анализировать сканируемое пространство с целью выявления угрозы столкновения с другими летательными аппаратами (ЛА), разрабатывать решения по устранению опасности, передавать их пилоту или решать проблему самостоятельно.
Также система может использоваться как стратегический планировщик курса с целью улучшения условий полета и его экономических показателей.
Система имеет модульную структуру и может быть модернизирована, как в целом, так и в отдельных модулях.
Актуальное на сайте:
Расчёт пяты скольжения
По ГОСТ 831-75 принимаем подшипник шариковый радиально-упорный однорядный, его характеристики:
- внутренний диаметр кольца подшипника,
- наружный диаметр кольца подшипника.
Рис.6 – Подшипник шариковый радиально-упорный однорядный
...
Определение действительного фонда рабочего времени
Определение действительного фонда рабочего времени производится по формуле [7, стр. 23]:
ТДФРВ = [dK – (dB + dП + dO)] · tСМ – dПП (tСМ – tПП) · КП; где (7.1)
ТДФРВ – действительный фонд рабочего времени
dK – количество календарных дне ...
Расчет мощности
вольтодобавочной машины и линейного генератора
Напряжение UД на зажимах двигателя зависит от напряжения линейного генератора UЛГ и падения напряжения в обмотке возбуждения генератора LМ2, т.е.
UД = UЛГ – IД rВГ . (2.4)
Для изменения напряжения UД регулируют ток независимого возбужде ...