Системный анализ работоспособности информационной системы
Вначале приведем возможные варианты отказа локально-динамической информационной системы контроля состояния подвижного состава.
Рисунок 8.1 - Дерево отказов системы контроля.
Отказ системы возможен в трех случаях: нет электропитания, неисправность самой системы контроля и отсутствие сигналов от объектов контроля, т.е. неисправность линии связи. Отсутствие питания может объясняться двумя факторами – это обрыв линии электропроводов, либо выход из строя источника электроэнергии (генератор для тепловоза или трансформатор для электровоза). Наличие высокочастотных помех может вызвать искажение информационных сигналов, что также приводит в неработоспособное состояние систему контроля. Этот фактор относится к неисправности в линии связи. Также сюда относится такой фактор как неисправность приемо-передающего устройства, поступают сигналы от объектов контроля, но для системы они остаются невидимыми, в результате системой принимается ошибочное решение, что объект контроля вышел из строя. К отказу самой системы могут привести три фактора: нет информационных сигналов от объектов контроля, отказ элементной базы системы и сбой работы программного обеспечения.
По аналогичной схеме представим дерево отказов вагонного оборудования системы контроля.
Рисунок 8.2 - Дерево отказов вагонной подсистемы.
Отказу вагонной подсистемы соответствуют аналогичные факторы. Отличаем является лишь то, что вместо объекта контроля здесь рассматриваются источники информации первого рода, и отсутствие информационных сигналов рассматривается как неработоспособность вагонной системы. Если в системе выведены из строя какие-либо ее элементы, то невозможно достоверно и качественно оценить состояние объекта контроля. Поэтому система является работоспособной при надежном функционировании всех ее элементов.
Рекомендации по предотвращению отказа в работе системы:
при подборе элементной базы уделять внимание элементам с повышенной надежностью, с наибольшим временем наработки на отказ;
повысить помехоустойчивость каналов связи, т.е. добавить алгоритмы кодирования данных;
при разработке максимально повысить отказоустойчивость программного оборудования, математического аппарата;
использовать изолированные провода при монтаже электропроводки, для предотвращения обрыва линии;
снабдить систему дополнительным, резервным, источником питания на случай выхода из строя основного.
Пожарная безопасность при работе на компьютере
В электронно-вычислительной машине (ЭВМ) пожарную опасность создают элементы электронной схемы и соединительные провода. Действующие радиотехнические детали разогреваются электрическим током, нагреваются окружающие их воздух и соединение детали, поэтому необходимо принудительное охлаждение (путём циркуляции воздуха). Пожароопасные изоляционные материалы: лаки, краски и эмали. Изоляционные материалы не теплостойки; при нарушении температурного режима, возможно разложение этих материалов и выделение различных горючих веществ. Предпочтительно применение несгораемых материалов (например, политетрафторэтилена, обладающего значительной тепло- и огнестойкостью и высокими изоляционными качествами) [22].
В ЭВМ следует предотвращать нагрев и излучение тепла из легковоспламеняющихся материалов, а также их воспламенение; возгорание трансформаторов, сопротивлений и дросселей вследствие недопустимого возрастания тока; нарушение изоляции соединительных проводов, пробой конденсаторов, короткое замыкание и возникновение электрической дуги; местные перегревы и искрения.
Возможными горючими материалами в производственном помещении могут быть материалы эстетической отделки помещений, мебель, а также материалы используемые для изоляции силовых и сигнальных кабелей.
Для ликвидации пожара в начальной стадии применяются первичные средства пожаротушения. Это углекислотные огнетушители ОУ-2 и порошковые ПО-1. Они позволяют тушить электроустановки до 1000В, находящиеся под напряжением, и не причиняют большого вреда электронной технике. Для своевременного сообщения о пожаре устанавливают автоматическую систему пожарной сигнализации.
Актуальное на сайте:
Техническое использование СЭУ
В настоящее время ведутся большие работы по созданию главных и вспомогательных судовых газовых турбин. Большое внимание, уделяемое газовым турбинам, объясняется рядом их преимуществ по сравнению с другими судовыми двигателями.
К преимуще ...
Кривошипно-шатунный механизм двигателя ВАЗ 21081
N=54,3 л.с. при n=5600 об/мин
Max частота вращения клеенчатого вала = 7,94 кгс·м
Диаметр поршня: D=76 мм
Ход поршня: S=60,6 мм
Радиус кривошипа: R=30,3 мм
Степень сжатия: е=9,0
Кривошипно-шатунный механизм служит для преобразов ...
Автопоезда Кременчугского автозавода
Эпопея создания активных автопоездов на Кременчугском автомобильном заводе Украинской ССР длилась с 1962 года и до последних дней существования Советского Союза, но так и не принесла сколь-нибудь ощутимых результатов.
На первом и последн ...