Адаптация математического аппарата

Информация » Беспроводная система контроля подвижного железнодорожного состава » Адаптация математического аппарата

Страница 2

Одним из способов решения указанных проблем может быть применение пороговых операторов типа

,

что позволит представить состояние контролируемого объекта кодовой последовательностью с числом элементов, равным числу сочетаний Сn2. Однако и в этом случае имеются недостатки – очевидны рост аппаратных затрат и трудности декодирования и классификации состояния контролируемого объекта.

Эффективным решением указанной задачи является реализация процесса упорядочивания в цифровой форме. Таким образом, необходимо среди п последовательностей выбрать и подключить к ЦСК объект, импульсная информационная последовательность которого характеризуется экстремальным значением интенсивности. Для сравнения сигналов от датчиков и определения параметра с экстремальным (максимальным) значением интенсивности импульсной последовательности на основе математического аппарата порядковой логики полученные п интенсивностей λi импульсных последовательностей рассматривают как неупорядоченное множество чисел An = {λ1, ., λn}. Среди них требуется найти r-й по порядку элемент λ(r) множества An (минимальный – λ(n), максимальный – λ(1)). Неупорядоченное множество чисел An можно записать согласно (2) в виде квазиматрицы-столбца

Тогда элемент λ(r) численно равен определителю-столбцу r-го ранга от квазиматриц:

λ (r) = А(пr), (9)

где

Раскрыв этот определитель по (6) или (7), получим порядковую логическую функцию fr(An) = λ(r), выражающую искомый элемент λi через все элементы λ1, ., λп множества An. Если учесть, что интенсивности λi импульсных последовательностей представлены m-разрядным двоичным кодом, то определение максимального элемента выражают операцией вычисления логического определителя вида

,

где λi = [],- значение интенсивности i-й импульсной последовательности, представленное в m-разрядном двоичном коде; , - j-й разрядный коэффициент λi.

Способ раскрытия логического определителя (10) для вычисления максимального элемента λ(1) в дизъюнктивной нормальной форме состоит в определении на первом этапе максимального разрядного коэффициента m-го разряда путем логического сложения элементов m-го столбца матрицы:

(11)

затем осуществляют определение столбца адресно-разрядных коэффициентов m-го разряда:

(12)

где - инвертированное значение ; - адресно-разрядный коэффициент m-го разряда i-й кодовой комбинации, .

Далее на каждом j-м этапе производят рекурсивное вычисление соответственно разрядных коэффициентов и адресно-разрядных коэффициентов Zj от старших разрядов к младшим согласно следующим правилам:

Страницы: 1 2 3 4 5

Актуальное на сайте:

Анализ эффективности использования трудовых ресурсов и фонда оплаты труда
Изучим состав, структуру и движение трудовых ресурсов в соответствии с таблицей 5, определим обеспеченность АТП водителями. Таблица 5 – Анализ производительности труда Показатели План Отчет Выполн. плана% Структура % ...

Исследование функционирования автомобиля в особо малой системе
Маятниковый маршрут с обратным груженым пробегом (γ1 = γ2) где П1, П2 – пункты погрузки, соответственно первый и второй; Р1, Р2 – пункты разгрузки, соответственно первый и второй; Рис. 3 Схема маятникового маршрута, с обрат ...

Расчет годового объема работ
1.7.1. Выбор и корректирование нормативных трудоемкостей Определение расчётных трудоёмкостей для всего парка автомобилей tEO C, tЕО Т, t1, t2, чел·ч , (1.17) КАМАЗ 65117: tEOс =0,4*1=0,4 чел-ч КАМАЗ 65115: tEOс =0,4 чел-ч КАМАЗ 43118 ...

Автомобильные дизельные топлива

Для автомобильных дизельных двигателей выпускаются топлива на базе керосиновых, газойлевых и соляровых дистилляторов прямой перегонки нефти. Для снижения содержания серы используют гидроочистку и депарафинизацию.

Продолжить чтение »