Адаптация математического аппарата

Информация » Беспроводная система контроля подвижного железнодорожного состава » Адаптация математического аппарата

Страница 2

Одним из способов решения указанных проблем может быть применение пороговых операторов типа

,

что позволит представить состояние контролируемого объекта кодовой последовательностью с числом элементов, равным числу сочетаний Сn2. Однако и в этом случае имеются недостатки – очевидны рост аппаратных затрат и трудности декодирования и классификации состояния контролируемого объекта.

Эффективным решением указанной задачи является реализация процесса упорядочивания в цифровой форме. Таким образом, необходимо среди п последовательностей выбрать и подключить к ЦСК объект, импульсная информационная последовательность которого характеризуется экстремальным значением интенсивности. Для сравнения сигналов от датчиков и определения параметра с экстремальным (максимальным) значением интенсивности импульсной последовательности на основе математического аппарата порядковой логики полученные п интенсивностей λi импульсных последовательностей рассматривают как неупорядоченное множество чисел An = {λ1, ., λn}. Среди них требуется найти r-й по порядку элемент λ(r) множества An (минимальный – λ(n), максимальный – λ(1)). Неупорядоченное множество чисел An можно записать согласно (2) в виде квазиматрицы-столбца

Тогда элемент λ(r) численно равен определителю-столбцу r-го ранга от квазиматриц:

λ (r) = А(пr), (9)

где

Раскрыв этот определитель по (6) или (7), получим порядковую логическую функцию fr(An) = λ(r), выражающую искомый элемент λi через все элементы λ1, ., λп множества An. Если учесть, что интенсивности λi импульсных последовательностей представлены m-разрядным двоичным кодом, то определение максимального элемента выражают операцией вычисления логического определителя вида

,

где λi = [],- значение интенсивности i-й импульсной последовательности, представленное в m-разрядном двоичном коде; , - j-й разрядный коэффициент λi.

Способ раскрытия логического определителя (10) для вычисления максимального элемента λ(1) в дизъюнктивной нормальной форме состоит в определении на первом этапе максимального разрядного коэффициента m-го разряда путем логического сложения элементов m-го столбца матрицы:

(11)

затем осуществляют определение столбца адресно-разрядных коэффициентов m-го разряда:

(12)

где - инвертированное значение ; - адресно-разрядный коэффициент m-го разряда i-й кодовой комбинации, .

Далее на каждом j-м этапе производят рекурсивное вычисление соответственно разрядных коэффициентов и адресно-разрядных коэффициентов Zj от старших разрядов к младшим согласно следующим правилам:

Страницы: 1 2 3 4 5

Актуальное на сайте:

Разработка природоохранных мероприятий по улучшению экологических показателей подвижного состава при осуществлении международных перевозок
Транспорт оказывает на окружающую среду, отдельные экосистемы как положительное, так и отрицательное влияние. С одной стороны, нарушаются принципы функционирования экосистем, но с другой - транспорт обеспечивает движение материальных пото ...

Кривошипно-шатунный механизм двигателя ВАЗ 21081
N=54,3 л.с. при n=5600 об/мин Max частота вращения клеенчатого вала = 7,94 кгс·м Диаметр поршня: D=76 мм Ход поршня: S=60,6 мм Радиус кривошипа: R=30,3 мм Степень сжатия: е=9,0 Кривошипно-шатунный механизм служит для преобразов ...

Износы и коробление плоскостей
18,0 Прочие износы 11,0 ИТОГО: 100 Распределение деталей по износу рабочих поверхностей к общему числу деталей Износ, мм % к общему числу 0,01-0,07 42,2 0,07-0,14 23,2 0,28-0,35 5 0 ...

Автомобильные дизельные топлива

Для автомобильных дизельных двигателей выпускаются топлива на базе керосиновых, газойлевых и соляровых дистилляторов прямой перегонки нефти. Для снижения содержания серы используют гидроочистку и депарафинизацию.

Продолжить чтение »