Адаптация математического аппарата

Информация » Беспроводная система контроля подвижного железнодорожного состава » Адаптация математического аппарата

Страница 2

Одним из способов решения указанных проблем может быть применение пороговых операторов типа

,

что позволит представить состояние контролируемого объекта кодовой последовательностью с числом элементов, равным числу сочетаний Сn2. Однако и в этом случае имеются недостатки – очевидны рост аппаратных затрат и трудности декодирования и классификации состояния контролируемого объекта.

Эффективным решением указанной задачи является реализация процесса упорядочивания в цифровой форме. Таким образом, необходимо среди п последовательностей выбрать и подключить к ЦСК объект, импульсная информационная последовательность которого характеризуется экстремальным значением интенсивности. Для сравнения сигналов от датчиков и определения параметра с экстремальным (максимальным) значением интенсивности импульсной последовательности на основе математического аппарата порядковой логики полученные п интенсивностей λi импульсных последовательностей рассматривают как неупорядоченное множество чисел An = {λ1, ., λn}. Среди них требуется найти r-й по порядку элемент λ(r) множества An (минимальный – λ(n), максимальный – λ(1)). Неупорядоченное множество чисел An можно записать согласно (2) в виде квазиматрицы-столбца

Тогда элемент λ(r) численно равен определителю-столбцу r-го ранга от квазиматриц:

λ (r) = А(пr), (9)

где

Раскрыв этот определитель по (6) или (7), получим порядковую логическую функцию fr(An) = λ(r), выражающую искомый элемент λi через все элементы λ1, ., λп множества An. Если учесть, что интенсивности λi импульсных последовательностей представлены m-разрядным двоичным кодом, то определение максимального элемента выражают операцией вычисления логического определителя вида

,

где λi = [],- значение интенсивности i-й импульсной последовательности, представленное в m-разрядном двоичном коде; , - j-й разрядный коэффициент λi.

Способ раскрытия логического определителя (10) для вычисления максимального элемента λ(1) в дизъюнктивной нормальной форме состоит в определении на первом этапе максимального разрядного коэффициента m-го разряда путем логического сложения элементов m-го столбца матрицы:

(11)

затем осуществляют определение столбца адресно-разрядных коэффициентов m-го разряда:

(12)

где - инвертированное значение ; - адресно-разрядный коэффициент m-го разряда i-й кодовой комбинации, .

Далее на каждом j-м этапе производят рекурсивное вычисление соответственно разрядных коэффициентов и адресно-разрядных коэффициентов Zj от старших разрядов к младшим согласно следующим правилам:

Страницы: 1 2 3 4 5

Актуальное на сайте:

Расчёт среднего тарифного разряда
Средний тарифный разряд определяется по формуле: , ( 33 ) - число производств. рабочих i-го разряда; – разряд рабочего. ...

Расчёт потребного количества транспортных единиц
Выбираем для перевозки 25 тонн автомобильных аккумуляторов крупнотоннажный контейнера типа 1А: Таблица 2.1 Крупнотоннажный контейнер Типо-размер Масса брутто, т Наружные размеры, мм Внутренние размеры, мм Внутренний объе ...

Испытания вакуумных усилителей в сборе с главными тормозными цилиндрами
Вакуумный трубопровод испытательной установки предварительно проверяют на герметичность. Для этого наконечник шланга для подсоединения к вакуумному усилителю закрывают пробкой и создают разрежение в вакуумном трубопроводе и шланге (0,075 ...

Автомобильные дизельные топлива

Для автомобильных дизельных двигателей выпускаются топлива на базе керосиновых, газойлевых и соляровых дистилляторов прямой перегонки нефти. Для снижения содержания серы используют гидроочистку и депарафинизацию.

Продолжить чтение »